Showing posts with label Photogrammetry. Show all posts
Showing posts with label Photogrammetry. Show all posts
Tuesday, May 16, 2023
Wednesday, April 1, 2020
Monday, January 27, 2020
Reduced normal matrix for solving fast photogrammetric bundle adjustment
Reduced normatrix for photogrammetric bundle adjustment based on the collinearity equations
Note: There are $m_1$ photos and $m_2$ object points, and the number of EOPs is 6. If 6*$m_1$ is less than 3*$m_2$, solve unknowns related with EOPs. If not, solve object points coordinates, first. This post shows only the first case, 3*$m_2$ > 6*$m_1$.[Fig. Normal matrix sample]
$$ \begin{pmatrix} N_1 & N_{12} \\ N_{12}^T & N_2 \end{pmatrix}\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} $$ $$ N_1 X_1 + N_{12} X_2 = C_1$$ $$ N_{12}^T X_1 + N_2 X_2 = C_2$$ In case $6m_1<3m_2$, let's slove $X_1$ first. $$ X_2 = N_2^{-1} C_2 - N_2^{-1} N_{12}^T X_1$$, therefore $$ (N_1 - N_{12} N_2^{-1} N_{12}^T) X_1 = C_1 - N_{12} N_2^{-1} C_2$$ $$ X_1 = (N_1 - N_{12} N_2^{-1} N_{12}^T)^{-1}(C_1 - N_{12} N_2^{-1} C_2)$$ And $$ X_2 = N_2^{-1}(C_2 - N_{12}^T X_1) $$ For $X_2$, we can avoid solving the inverse matrix of $3m \times 3m$ . For $i_{th}$ point, $$ X_{2_i} = N_{2_{i}}^{-1}(C_{2_i} - N_{12_i}^T X_1) $$Sunday, September 15, 2019
Photogrammetric Intersection
Linear Intersection for a Stereo Pair
There are two images.Object point vs. image point, in the first image:
$$ \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} X^0_a \\ Y^0_a \\ Z^0_a \end{pmatrix} + {\lambda_a}{R_a} \begin{pmatrix} x_a \\ y_a \\ -f_a \end{pmatrix} \tag{1} $$
Object point vs. image point, in the second image:
$$ \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} X^0_b \\ Y^0_b \\ Z^0_b \end{pmatrix} + {\lambda_b}{R_b} \begin{pmatrix} x_b \\ y_b \\ -f_b \end{pmatrix} \tag{2} $$
Therefore,
$$ \begin{pmatrix} X^0_b \\ Y^0_b \\ Z^0_b \end{pmatrix} - \begin{pmatrix} X^0_a \\ Y^0_a \\ Z^0_a \end{pmatrix} = {\lambda_a}{R_a} \begin{pmatrix} x_a \\ y_a \\ -f_a \end{pmatrix} - {\lambda_b}{R_b} \begin{pmatrix} x_b \\ y_b \\ -f_b \end{pmatrix} \tag{3} $$ $$ \begin{pmatrix} r_{11_a}x_a + r_{12_a}y_a - r_{13_a}f_a & - r_{11_b}x_b - r_{12_b}y_b + r_{13_b}f_b \\ r_{21_a}x_a + r_{22_a}y_a - r_{23_a}f_a & - r_{21_b}x_b - r_{22_b}y_b + r_{23_b}f_b \\ r_{31_a}x_a + r_{32_a}y_a - r_{33_a}f_a & - r_{31_b}x_b - r_{32_b}y_b + r_{33_b}f_b \end{pmatrix} = \begin{pmatrix} X^0_b - X^0_a \\ Y^0_b - Y^0_a \\ Z^0_b - Z^0_a \end{pmatrix} \tag{4} $$
where, $ \begin{pmatrix} X \ Y \ Z \end{pmatrix}^T $ are object coordinates,
$\begin{pmatrix} X^0_a \ Y^0_a \ Z^0_a \end{pmatrix}^T$, $\begin{pmatrix} X^0_b \ Y^0_b \ Z^0_b \end{pmatrix}^T$, $R_a$, and $R_b$ denote positoions and attitudes of two images. $\begin{pmatrix} x_a \ y_a \ -f_a \end{pmatrix}^T$ and $\begin{pmatrix} x_b \ y_b \ -f_b \end{pmatrix}^T$ are photo coordinates of each image. If two images are obtained by a camera, $f_a = f_b$.
In the equation (4), there are two unknowns ($\lambda_a$ and $\lambda_b$) and three linear equations. Once $\lambda_a$ and $\lambda_b$ are determined, we get two sets of object coordinates from two scale factors and can use mean values of them.
General Case: Linear Intersection for Multiple Images
$$ \left. \begin {matrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} - {\lambda_1}{R_1} \begin{pmatrix} x_1 \\ y_1 \\ -f_1 \end{pmatrix} = \begin{pmatrix} X^0_1 \\ Y^0_1 \\ Z^0_1 \end{pmatrix} \\ \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} - {\lambda_2}{R_2} \begin{pmatrix} x_2 \\ y_2 \\ -f_2 \end{pmatrix} = \begin{pmatrix} X^0_2 \\ Y^0_2 \\ Z^0_2 \end{pmatrix} \\ \vdots \\ \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} - {\lambda_n}{R_n} \begin{pmatrix} x_n \\ y_n \\ -f_n \end{pmatrix} = \begin{pmatrix} X^0_n \\ Y^0_n \\ Z^0_n \end{pmatrix} \end {matrix} \right ] \tag{5} $$Threrefore,
$$ \begin{pmatrix} 1 & 0 & 0 & -r_{11_1}x_1 - r_{12_1}y_1 + r_{13_1}f_1 & \cdots \\ 0 & 1 & 0 & -r_{21_1}x_1 - r_{22_1}y_1 + r_{23_1}f_1 & \cdots \\ 1 & 0 & 1 & -r_{31_1}x_1 - r_{32_1}y_1 + r_{33_1}f_1 & \cdots \\ 1 & 0 & 0 & 0 & -r_{11_2}x_2 - r_{12_1}y_2 + r_{13_2}f_2 & \cdots \\ 0 & 1 & 0 & 0 & -r_{21_2}x_2 - r_{22_2}y_2 + r_{23_2}f_2 & \cdots \\ 0 & 0 & 1 & 0 & -r_{31_2}x_2 - r_{32_2}y_2 + r_{33_2}f_2 & \cdots \\ \vdots \\ 1 & 0 & 0 & 0 & 0 & \cdots & -r_{11_n}x_n - r_{12_n}y_n + r_{13_n}f_n \\ 0 & 1 & 0 & 0 & 0 & \cdots & -r_{21_n}x_n - r_{22_n}y_n + r_{23_n}f_n \\ 0 & 0 & 1 & 0 & 0 & \cdots & -r_{31_n}x_n - r_{32_n}y_n + r_{33_n}f_n \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix} = \begin{pmatrix} X^0_1 \\ Y^0_1 \\ Z^0_1 \\ X^0_2 \\ Y^0_2 \\ Z^0_2 \\ \lambda_2 \\ \vdots \\ X^0_n \\ Y^0_n \\ Z^0_n \end{pmatrix} \tag{6} $$
In the equation (6), there are $(3+n)$ unknowns ($\begin{pmatrix}X&Y&Z\end{pmatrix}^T$, and $3n$ equations. If there are 2 or more than 2 images, there should be redundancy.
Friday, May 18, 2012
Derivation of direct linear transformation for a line scanner
Thursday, February 17, 2011
Plane fitting
Plane equation:
(1) lx + my + nz = d
where d is a distance from an origin to the plane,
{l,m,n} is direction consines, and
sqrt(l*l + m*m + n*n)=1.
(2) ax + by + cz = 1
where d presented in (1) can be calculated by 1/sqrt(a*a + b*b + c*c).
(3) Ax + By + Cz = d^2
where (A, B, C) denotes a vector from an origin to the plane, which can be obtained by A = l*d, B=m*d, and C=n*d.
For a point cloud, P0, P1, P2, ~ Pn,
Its centroid C, (cx, cy, cz), is on an expected least squre fitted plane.
Therefore, dot product of [l, m, n] and (Pi-C) is zero.
l*xi + m*yi + n*zi = 0
whrer (xi,yi,zi) = Pi
To avoid [l, m, n] are estimated as zero,
a constraint of direction consines is adopted,
l^2 + m^2 + n^2 = 1.0
Subscribe to:
Posts (Atom)
-
Reduced normatrix for photogrammetric bundle adjustment based on the collinearity equations Note: There are $m_1$ photos and $m_2$ obje...
-
-. A-priori reference variable has no unit (unitless). It is typically 1.0 or can be a different value for scaling. -. Weight is determ...